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BREAKUP O F  VARIOUS LIQUID JETS BY SHOCK WAVES 

AND APPLICATIONS TO F33SONANT COMBUSTION 

by Gerald Morrell and Frederick P. Povinell i  

Lewis Research Center 

SUMMARY 

Breakup times of l i qu id  j e t s  i n  crossflow were measured i n  a shock tube. 
Three j e t  diameters (0.052, 0.0785, and 0.157 i n . )  of w a t e r ,  n-heptane, l iqu id  
oxygen, and three  glycerol-water mixtures were studied. 
t o  increase regular ly  with an increase i n  t h e  r a t i o  of j e t  radius t o  the  gas 
veloci ty  behind the  shock f ront .  

Breakup time was found 

A model based on m a s s  removal f r o m  a l i qu id  boundary layer agrees with t h e  
experimental data. 
times permits quant i ta t ive estimates of breakup time or average m a s s  removal 
r a t e  fo r  other conditions. 

A least-squares f i t  of measured and calculated breakup 

With atomization assumed t o  be the  rate-control l ing process, it i s  shown 
how s imi l a r i t y  parameters of t h ree  theories  of combustion resonance may be 
evaluated i n  terms of engineering design variables.  

INTRODUCTION 

The process of breakup and atomization, produced by shock waves ac t ing  on 

Information on the  r a t e  of t h i s  
l i qu id  j e t s  or drops, may be important i n  osc i l l a to ry  combustion e i the r  as an 
i n i t i a t i n g  or a driving mechanism ( r e f .  1). 
process should be helpful  whether t h e  osc i l l a t ion  i s  t r ea t ed  as a perturbation 
on the  mean vaporization r a t e  or  as a detonation i n  a heterogeneous medium. 

Although the  l i t e r a t u r e  on atomization i s  voluminous, the  e f f ec t s  produced 
by shock waves have not been t r ea t ed  extensively. 
been i n  t h e  minimum veloc i ty  f o r  i n i t i a t i o n  of breakup (refs. 2 t o  5) ;  but from 
some of t h e  p i c t o r i a l  sequences presented, breakup times can be inferred.  Fre- 
vious s tudies  on the  breakup time of w a t e r  j e t s  i n  shock tubes (refs. 6 and 7)  
indicated t h a t  m a s s  i s  removed from the  main body of l i qu id  i n  a boundary layer  
f o r  gas-stream ve loc i t i e s  t h a t  a r e  not too close t o  t h e  minimum values required 
t o  i n i t i a t e  t h e  process. I n  reference 7 an expression f o r  breakup time i s  de- 
r ived i n  terms of l i qu id  and gas properties,  gas stream velocity,  and j e t  s ize .  

The primary in t e re s t  has 

The purpose of t h e  study reported herein was t o  t e s t  t he  predicted e f f ec t s  



of l i qu id  propert ies  on breakup time. 
l i qu id  oxygen, and three  glycerol-water m i x t u r e s ,  along with someaddi t ional  
data  f o r  water, were obtained i n  t h e  same apparatus that w a s  used f o r  a previ- 
ous study. The r e s u l t s  are correlated i n  terms of t h e  bounday-layer model, 
and t h e  possible s ignif icance of j e t  breakup i n  osc i l l a to ry  combustion i s  d is -  
cussed. 

Measured breakup times of n-heptane, 
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SYMBOLS 

engine contraction r a t i o  

constant 

const ant 

length of l i qu id  sheet 

distance from stagnation point t o  edge of j e t  

heating parameter 

i n i t i a l  m a s s  per uni t  length of j e t  

f r ac t ion  burned per u n i t  length 

i n i t i a l  j e t  radius  

Reynolds number based on 

combustor radius  

t i m e  

ac t ion  time 

breakup time 

chemical conversion time 

wave time 

gas ve loc i ty  behind shock wave 

arithmetic average ve loc i ty  i n  l i qu id  boundary layer 

volume per unit length of j e t  

j e t  ve loc i ty  

Weber number based on 

Ro, Roup/p. 

Ro, pu2Ro/o 
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distance along l i qu id  sheet from stagnation point 

thickness of l i qu id  boundary layer  

gas v iscos i ty  

l i qu id  v i s  cos it y 

kinematic v i scos i ty ,  p/p 

l i qu id  kinematic viscosi ty ,  p2/p2 

gas densi ty  behind shock wave 

l i qu id  densi ty  

i n t e r f a c i a l  tension 

average pressure-sensit ive time l a g  

r a t i o  of chemical conversion time t o  wave time 

Subscripts: 

calc  calculated 

exp experimental 

APPARATUS AND P R O C E D W  

A schematic diagram of the  apparatus i s  shown i n  f igure  1. Except f o r  t he  
oxygen flow system, no changes were made i n  the  arrangement described i n  r e fe r -  
ence 7. The square t es t  section has an in t e rna l  dimension of 2.721 inches t o  
provide a cross-sectional a rea  about equal t o  t h a t  of t he  3-inch-diameter 
schedule 40 pipes used f o r  t he  r e s t  of t he  shock tube. The l iqu id  j e t  i s  in-  
jected v e r t i c a l l y  at  a s t a t i o n  approximately 51.5 inches from t h e  diaphragm 
(16 .7  dim) and flows out through a 1.25-inch-diameter opening i n  t h e  f loo r  Of 
t he  t es t  sect ion. .  The length of t h e  high-pressure sect ion could be varied from 
1 inch t o  8 feet  t o  provide a range of act ion times from about 0.2 t o  25 m i l l i -  
seconds. Action t i m e  i s  defined here as the  constant-pressure period plus t h e  
time required f o r  t h e  pressure t o  decay t o  one-third of i t s  i n i t i a l  value. 

Wave speed w a s  measured by two basium t i t a n a t e  b l a s t  gages located 2 f e e t  
apar t ,  and pressure behind t h e  wave was monitored by a strain-tube pressure 
transducer with a na tura l  frequency of about 25 kilocycles and a range of 200 
pounds per square inch. 
kilocycle frequency f o r  t h e  time base. These four s ignals  were  displayed by a 
dual-beam oscilloscope equipped with 100-kilocycle chopping amplifiers t o  pro- 
duce four displays on a time sharing basis .  

A sine-wave generator w a s  u s e d t o  provide a 2- 

3 



camera 
CD-7542 

Figure I. - Schematic diagram of experimental apparatus. 

Back-lighted s t reak  photographs were taken with a 35-millimeter shut te r -  
l e s s  high-speed camera a t  a f i lm veloci ty  of approximately 990 inches per sec-' 
ond. The t e s t - sec t ion  window facing the  camera was  masked, except f o r  an a x i a l  
s l i t  0 .1  inch wide and 1 4  inches long. 
swept mode, was photographed simultaneously by means of a mirror arrangement t o  
provide a r e a l  time cor re la t ion  with the  p ic ture  of t he  breakup process. A 50- 

The oscil loscope, operated i n  the  un- 

I n i t i a l  Nominal shock 
pressure Mach number 
r a t i o  a t  70' F I' 1.115 

1.225 

7.12 1.506 

14.61 1.725 

Diaphragm 
mater ia l  

3iled onion- 
skin paper 

Soft brass 

Soft brass 

3pring brass 

Diaphragm 
thickness, 

in .  

IIwo sheets 

0.0015 

.004 

.007 

millimeter f / 2  l ens  
demagnification of 11 at  the  f i l m .  A 
t y p i c a l  s t reak  photograph i s  shown i n  
figure 2 together with a correspond- 
ing framing photograph f o r  reference.  

used with a 

The i n i t i a l  pressure i n  t h e  t e s t  
sect ion was  1 atmosphere, and four  
nominal values of i n i t i a l  pressure 
r a t i o  (across the  diaphragm) were 
used. These values, together with 
t h e  diaphragm materials, a r e  shown i n  
the  t a b l e  a t  the  l e f t .  The i n i t i a l  
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Figure, 2. - Typical photographs of jet breakup. Shock velocity, 
1655+5 feet per second: qas velocity. 732+ 5 feet per second: 
iet diameter; 0.052 inch; breakuptin. 
1.1 milliseconds. 

Liquid 

Water 

Heptane 

Oxygen 

15 Weight percent 
glycerol  

58 Weight percent 
glyc e r  01 

79 Weight percent 
glyc e r  01 

5urface 
;ension 
lb/sec 

0.161 

.045 

.033 

.160 

.151 

.I47 

approximately, 

Density, 
lb/cu f't 

~ 

62.4 

42.6 

73.2 

64.5 

71.4 

75.0 

~ 

Viscosity, 
. b / ( f t ) ( sec  

pressures were about 90 percent of t he  
diaphragm break pressure. The shock 
wave was i n i t i a t e d  by puncturing t h e  
the diaphragm. 

G a s  ve loc i ty  and density behind 
the shock wave w e r e  calculated from the  
measured value of shock veloci ty  by 
using t h e  one-dimensional wave equa- 
t ions (ref. 8 )  at  a temperature of 
70' F. The laboratory temperature w a s  
7Oo+5O F. I n i t i a l  a i r  density w a s  
taken as 0.07488 pound per cubic foot ,  
and air v iscos i ty  w a s  assumed t o  be 
constant at  1 . 2 0 5 ~ 1 0 - ~  pound per foot  
per second. 

Three j e t  diameters, 0.052, 
3.0785, and 0.157 inch, were used with 
each of t he  following l iqu ids :  water, 
n-heptane, oxygen, and three  glycerol- 
water mixtures. Length-to-diameter ra- 
t i o s  of t h e  l iquid- inject ion o r i f i ce s  
were a t  l e a s t  10, so  t h a t  t he  j e t  w a s  
turbulent. I n  a previous study 
( r e f .  7 ) ,  no s igni f icant  difference i n  
breakup charac te r i s t ics  was  observed 
between turbulent j e t s  and smooth j e t s  
produced by a sharp-edged o r i f i ce .  
di th  t h e  exception of oxygen, a l l  l i q -  
Jids were used a t  70° F. The oxygen 
m s  passed through a liquid-nitrogen 
iea t  exchanger and then through a 
vacuum-jacketed l i n e  t o  the  in jec tor .  
Properties of t he  l iqu ids  used f o r  com- 

putation of breakup time a re  given 
i n  the  t a b l e  a t  t h e  l e f t .  The oxy- 
gen propert ies  were taken f o r  a tem- 
perature midway between the  normal 
boi l ing  points of oxygen and n i t ro-  
gen. I n  t h i s  region, t he  propert ies  
are qui te  sens i t ive  t o  temperature. 

RESULTS Am DISCUSSION 

A l l  t h e  experimentally deter-  
mined breakup times a re  p lo t ted  i n  
f igure  3 as a function of the  r a t i o  
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Figure 3. - Breakup times of jets as function of radius-velocity ratio. 
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of i n i t i a l  j e t  radius  t o  gas ve loc i ty  behind t h e  shock wave. 
data  from reference 7 are a l so  included. The so l id  l i n e s  represent t h e  least- 
squares f i t ,  which i s  of t he  form 
99.7 percent probabi l i ty  region. Although a few of t h e  data  points  l i e  outside 
t h i s  region and could be discarded on s t a t i s t i c a l  grounds, t he re  w e r e  no appar- 
ent discrepancies i n  t h e  experiments t h a t  would j u s t i f y  t h e i r  exclusion. The 
probable e r ror  was approximately 0.12 millisecond, but varied somewhat among 
the  f lu ids .  No systematic independent e f f ec t s  of Ro and u were observed. 
In  every case of incomplete breakup, t h e  ac t ion  t i m e  w a s  considerably l e s s  than 
the  expected breakup time ( f ig s .  3(a) and ( e ) ) .  
only observed effect  of act ion time on t h e  breakup process. 
breakup times i n  excess of t he  act ion time were measured, which would indicate  
tha t ,  i f  t he  breakup process i s  su f f i c i en t ly  advanced, d i s in tegra t ion  of t h e  
l i qu id  phase may continue because of i t s  i n e r t i a  even i n  the  absence of an ap- 
p l ied  s t r e s s .  

I n  reference 7 it i s  shown t h a t  a model based on t h e  formation of a l i qu id  
sheet with m a s s  removal from the  boundary layers  on both s ides  gives reasonable 
agreement with t h e  observed data  f o r  water. The volumetric removal r a t e  may be 
wr i t ten  

I n  figure 3(a), 

t = a(Ro/u)b; t h e  dashed l i n e s  bound t h e  

Incomplete breakup w a s  t h e  
I n  some cases, 

where 6 l  and ul,av are both functions of x. With L and t h e  free-stream 
ve loc i ty  assumed constant, equation (1) may be integrated t o  y ie ld  ( r e f .  7)  

t b  = 0 . 5 4 ( - )  

The apparent length of t he  l iqu id  sheet observed i n  these experiments 
could not be r e l a t ed  t o  a simple function of Weber number and Reynolds number 
as w a s  t h e  case f o r  water alone ( r e f .  7 ) .  A dimensional analysis and a l eas t -  
squares f i t  of t h e  data  obtained with t h e  longest ac t ion  times y ie ld  the  f o l -  
lowing expr e s s ion : 

0.143 
- -  - 1 + 8.23x10-3(Reo)0~418(Weo)o~340(~) 
2RO (3) 

which represents  t h e  experimental data  with a probable e r ror  of 0.435. 

In  terms of t h e  parameters ac tua l ly  varied i n  es tabl ishing equation (3), 

0.76& 1 0.615 0.143 

0.34 0.143 
RO P p2 

c l  P l  

- - l a  L 
2R0 

By comparison, t h e  corresponding expression of reference 7 f o r  t h e  parameters 
t h a t  ac tua l ly  vasied i n  t h a t  study i s  

7 



It is seen t h a t ,  although t h e  magnitudes of t h e  respect ive exponents are d i f -  
f e r en t ,  t he  two expressions show s i m i l a r  t rends with respect t o  dependence on 
Ro, u, and p. 

I n  reference 9 it i s  shown, however, t h a t  t h e  assumption of a f la t  sheet 
of l i qu id  i s  untenable. 
i n  crossflow tends t o  deform s o  as t o  approximate a segment of a la rger  cylin- 
der. If t h e  cross sect ion i s  assumed t o  be a c i rcu lar  skgment (as shown i n  
f i g .  4),  t he  surface length can be calculated from t h e  apparent length ( a l t i -  
tude of t h e  segment) f o r  an included angle of corresponding t o  t h e  posi-  
t i o n  where the  dynamic pressure on t h e  cylinder i n  crossflow i s  a minimum. The 
r e su l t i ng  expression f o r  t h e  corrected length i s  L’ = 2.09 L. Subst i tut ion of 
t he  corrected equation (3)  i n  equation ( 2 )  y ie lds  the  expression 

Two-dimensional photographs indicate  t h a t  a l i qu id  j e t  

2 ~ / 3  

(4)  
1/3 0 R e 0  

t b  =0.37(2) (er’3 0.143 .,/ 1 + 8 . 2 3 ~ 1 0 - ~ ( R e , ) ~ - ~ ~ ~  

The average rate of breakup i s  given by 

MO - = 8.5 (er’3(er’6 d 
tb 

+ 8.23x10-3(Re0)0*418(We0)0~340(~) 0.143 ] 
In  f igure  5 t h e  measured values of breakup time a r e  p lo t ted  against  t h e  values 

Figure 4 - Cross section of deformed jet. 

.1 1 

/’ 

east - 
quare! 
ne  

10 
Calculated breakup time, msec 

Figure 5. - Comparison of measured breakup times with values cal- 
culated from equation (4). 
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computed from equation ( 4 ) .  The dashed l i n e  i s  t h e  t rend f o r  equivalence of 
measured and calculated times. The calculated values tend t o  be high f o r  long 
breakup times and somewhat low f o r  t h e  shortest  breakup time, especial ly  fo r  
t h e  most viscous f lu ids .  The measured times f o r  l i qu id  oxygen a re  a l l  lower 
than t h e  predicted times, an e f f ec t  which could be due t o  rapid vaporization of 
t h e  deforming m a s s .  

It i s  a l so  apparent t h a t  t h e  data f o r  t h e  higher v iscos i ty  f l u i d s  seem t o  
be separate from the  data f o r  t h e  lower v iscos i ty  f l u i d s ,  especial ly  i n  t h e  r e -  
gion of low breakup times; thus t h e  e f f ec t  of f l u i d  v iscos i ty  on L/2Ro 
not accounted e n t i r e l y  f o r  i t s  influence on breakup time. It may be tha t  t h e  
ve loc i ty  p r o f i l e  i n  t h e  liquid-phase boundary layer i s  a l so  influenced by v is -  
cos i ty  i n  some way. The so l id  l i n e  i n  f igure 5 i s  the  least-squares f i t  repre- 
sented by the  empirical equation 

has 

- 0.66 
tb,exp - tb,calc ( 5 )  

where t h e  times a re  i n  milliseconds and tb,calc i s  obtained from equation 
(4)  * 

APPLICATION TO COMBUSTION INSTABILITY 

I n  reference 10, Penner has proposed t h a t  i n  order t o  maintain combustion 
s t a b i l i t y  i n  scal ing from one rocket engine s i z e  t o  another, t he  r a t i o  of chem- 
i c a l  conversion time t o  wave time should be held constant; t h a t  i s ,  

X r f -  - constant 
t W  

If it i s  assumed t h a t  t h e  atomized l i qu id  produced by the  shock wave i s  rap id ly  
burned as compared with the  r a t e  a t  which it i s  produced, ti may be equated 
w i t h  tb. For t he  t ransverse acoustic mode, tw 0: r. If the  flow conditions 
a re  such t h a t  

0.143 
8.23~10'~ (Re,) - 418 ( Weo) ' 340 (+) << 1 

t h e  parametric dependence of t b  
equations ( 4 )  and ( 5 ) ,  by 

on t h e  experimental variables i s  given, from 

0.99 0.44 -o.ll 

0.33 pO.ll 0.22 
t b O C - - - I J .  Ro p2 

P l  U 

I f ,  on the  other hand, 
0.143 

8 .  23x10-3(Reo)o*418(Weo)o~340(~) >> 1 
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t he  parametric dependence i s  given by 

0.74 0.4 

0.69 0.32 0.17 
U P 

Expression ( 6 )  appears t o  be more near ly  applicable t o  rocket combustors. 
s t i t u t i o n  of expression (6) i n  t h e  equation f o r  

Sub- 
x yields ,  f o r  a given l iqu id ,  

= constant Roo. 74 xa: 0. 6gP0. 32 r u  
(7) 

For a given magnitude of perturbation u, t he  j e t  s i ze  should be scaled approx- 
imately as the  4/3 power of t he  combustor radius  and the  square root of t h e  
pressure. Equation ( 7 )  a l so  indicates  t h a t ,  i f  an engine i s  scaled t o  a larger  
s i ze  while ce r t a in  values of R, and p a r e  re ta ined,  t h e  perturbation ve- 
l o c i t y  must be decreased proportionally i n  order t o  r e t a i n  s imi l a r i t y  with r e -  
spect t o  combustion s t a b i l i t y .  It appears, therefore,  t h a t  t he  simplest method 
t h a t  w i l l  r e t a i n  s imi l a r i t y  with respect t o  combustion eff ic iency i n  combustor 
scale-up w i l l  tend t o  des tab i l ize  the  system. 

In  reference 11, Crocco has derived, by an e n t i r e l y  d i f fe ren t  approach, 
t h e  parameter 
s t a b i l i t y .  Obviously, i f  t h e  same assumption i s  made about t h e  r e l a t i o n  be- 
tween T~ and t b  as was  made with respect t o  ti, the  conclusions w i l l  be 
the  same as those derived from t h e  chemical conversion parameter. I n  t h i s  
case, however, there  i s  a second f ac to r  t h a t  must be considered, t he  pressure 
in te rac t ion  index. This pressure in te rac t ion  index appears t o  be l e s s  sensi-  
t i v e  t o  combustor s i z e  than 

Ts/tw, which must l i e  outside ce r t a in  limits i n  order t o  achieve 

T ~ .  

A nonlinear solut ion fo r  t h e  transverse acoustic mode of o sc i l l a t ion  i s  
given i n  reference 1 2 .  For a vaporization-limited model, two parameters should 
be held constant i n  scal ing t o  r e t a i n  s t a b i l i t y ,  t he  Mach number of t he  gas 
phase r e l a t i v e  t o  t h e  l i qu id  phase and a heating-rate number 

If it i s  assumed t h a t  t h e  value of m i s  determined by the  atomization r a t e  
( i . e . ,  atomized drops vaporize quickly compared with t h e  r a t e  a t  which they a re  
produced), then t h e  r a t e  may be wr i t ten  {ref .  1) 

1 

and 
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For a given l iquid,  subs t i tu t ion  of equation (5) yields  

ruO. 6gP0. 32 

RZ' 7%jA 
= constant @ =  

In  t h i s  case, Ro, v or both, m u s t  be increased t o  maintain s imi l a r i t y  
j '  

with respect t o  system s t a b i l i t y  as combustor s i ze  and pressure are increased. 

A l l  three theor ies  of combustion i n s t a b i l i t y  are consistent i n  showing 
t h a t  s imi l a r i t y  with respect t o  s t a b i l i t y  cannot be maintained i n  scal ing up 
combustor s i z e  or pressure if t h e  in jec t ion  charac te r i s t ics  remain invariant.  
For a single-stage combustor, however, in jec t ion  invariance i s  required t o  
maintain s imi l a r i t y  with respect t o  combustor eff ic iency (ref. 13). The two 
requirements, therefore ,  are incompatible i n  a straightforward scale-up. It 
might be possible t o  overcome the  impasse by properly staging t h e  in jec t ion  
process. I n  t h i s  case, modeling experiments could be conducted on t h e  individ- 
u a l  stages,  but t h e  matching problems would be deferred t o  t h e  fu l l - s ca l e  t es t  
program. 

SUMMARY OF RESULTS 

Breakup times i n  a transverse gas flow have been measured i n  a shock tube 
f o r  th ree  s izes  of j e t s  of water, :-heptane, l i qu id  oxygen, and three glycerol- 
water m i x t u r e s .  I n  a l l  cases t h e  breakup time was found t o  increase regular ly  
with t h e  r a t i o  of i n i t i a l  j e t  radius  t o  gas ve loc i ty  behind the  shock wave. 

A model based on m a s s  removal from a l iqu id  boundary layer  gives fa i r  
agreement with the observed values of breakup time. 
high values i n  t h e  range of long breakup times (>3 msec) and tends t o  give low 
values f o r  shorter  breakup times (Clmsec) ,  especial ly  f o r  t he  more viscous 
l iquids .  An empirical equation w a s  derived on t h e  bas i s  of a least-squares f i t  
of measured t o  calculated breakup times. 

The model tends t o  give 

With l i qu id  breakup assumed t o  be the  rate-control l ing process, it w a s  
shown how s imi l a r i t y  parameters f o r  th ree  combustion i n s t a b i l i t y  theor ies  could 
be evaluated. 

The three  theor ies  a r e  consistent i n  showing t h a t ,  when a l l  other f ac to r s  
are held constant, j e t  radius  should be scaled i n  proportion t o  t h e  4/3 power 
of t h e  combustor radius  and the  square root of t he  combustion pressure i n  
order t o  maintain s imi l a r i t y  with respect t o  s t a b i l i t y .  They a re  consistent,  
furthermore, i n  showing tha t  scale-up without change i n  in jec tor  radius or j e t  
veloci ty  w i l l  reduce s t a b i l i t y ,  since a smaller value of perturbation veloci ty  
i s  required t o  maintain s imi la r i ty .  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, Apri l  8, 1964 
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